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Summary Qualitative Comparison Quantitative Comparison

Cloud masks are one of the most fundamental cloud products Continental US (Night) AR L iR
derived from satellite imagers with implications for clear-sky
products, cloud-property algorithms, assimilating sounder
radiances and other applications. Here, we detalil our
exploration of gradient boosted methods to predict the
presence of clouds from Visible Infrared Imaging Radiometer
Suite (VIIRS-SNPP) observations. We use the Clouds from
AVHRR Extended (CLAVR-x) cloud mask (Heidinger et al.
2014) as our baseline for comparison, and the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) as our ‘truth’
dataset.
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Overall, this model performs very well compared ° 1”1
to CLAVR-x with exceptional improvements over —
nighttime snow and ice. T T — | 75- R
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Datasets

* One year (2016) of collocations between VIIRS (SNPP) and
CALIOP are used to train and evaluate this model
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Collocations are only used under three conditions = [0 P S
» Time difference between the two platforms < 8 minutes A0 L T T b TR
« CALIOP cloud optical depth equal to 0 or > 0.01 115°W  110°W  105°W : | o N R s i
» CALIOP 5 km cloud fraction equal 0 or 1.0 (no cloud 10°E 13°E 20°E 25°E 30°E 3¢

edges)
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Collocations are split into 3 groups
» Training set is every other day in 2016 (~50% of all data)
» Validation and test sets are evenly split from remainder
(~25% each)
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Main Takeaways

Increased accuracy in all scenarios relative to CLAVR-x
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CLAVR-x Cloud Probability
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Largest improvements are seen at high latitudes and snow/ice
covered scenes during the night
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CLAVR-x Cloud Probability

9.92 million globally-distributed clouds are used in training
and validation of this model
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TS These models are more complex than the CLAVR-x naive
e Y ﬁ SR . Ay o bayesian. While not impossible, model interpretation is more

Additional information obtained from clear-sky radiative . BN ok - W AR e R difficult.
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Imager Brightness Temperatures: 11ym, 12um, 8.5um, 3.75um « LightGBM framework (Ke et al. 2017; https://github.com/Microsoft/LightGBM) not be construed as an official National Oceanic and Atmospheric
Administration or U.S. Government position, policy, or decision.

Imager Retlectance: 1.60um, 1.38ym, 0.65um, 0.47um » Two gradient boosted decision tree models are made: one with only infrared observations, and
Clear-Sky Radiative Transfer: 11um, 12um, 3.75um, 0.65um another with both infrared and visible observations

Geographic Information: latitude, land/snow/ice cover, coastlines The models are made with a maximum of 150 leaves for each tree, 50% of all features sampled References

at each split, and a minimum of 1,000 observations at each leaf. The learning rate was set to Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naive Bayesian cloud-

n-1 th: - : - : detection scheme derived from Calipso and applied within PATMOS-x. J. Appl.
0.2(0.98)"! for the n'" iteration with early stopping. The IR model resulted in 29 trees, and the Meteorol. Climatol.. 51, 1129—1144, doi:10.1175/JAMC-D-11-02.1.

Observed/Clear-Sky Difterences: BTy, - BT11,m clear-sky IR+VIS model resulted in 65 trees.

Other Ancillary Data: Tgytace; 3-754m surface emissivity

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, 2017:
Other Cloud Tests: BTy ,,- BT1oym» BT11,m—BT375um The classification task is binary (O=clear, 1=cloudy) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 3146-3154.
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-

*This list is representative, but not comprehensive. Contact Charles White at : _— .
P P The model output is the mean prediction across the ensemble (between 0 and 1) decision-tree

cwhite25@wisc.edu for full variable list




